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Inversion of specific heat oscillations with in-plane magnetic field angle in two-dimensional
d-wave superconductors
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Experiments on several novel superconducting compounds have observed oscillations of the specific heat
when an applied magnetic field is rotated with respect to the crystal axes. The results are commonly interpreted
as arising from the nodes of an unconventional order parameter, but the identifications of nodal directions are
sometimes controversial. Here we show with a semiclassical model calculation that when the magnetic field
points in the direction of the nodes, either minima or maxima can occur in the specific heat depending on the
temperature 7" and the magnetic field H. An inversion of the angular oscillations takes place with respect to
those predicted earlier at low temperature by the nodal approximation. This result, together with the argument
that the inversion takes place based on an approximation valid at moderate fields, indicates that the inversion

of specific heat oscillations is an intrinsic feature of nodal superconductors.
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I. INTRODUCTION

Initial information on the symmetry of the order param-
eter in newly discovered superconductors is often provided
by power laws in the temperature dependence of thermody-
namic and transport properties.! However, the exact nodal
structure cannot be determined by these techniques because
the same exponents may correspond to order parameters with
different symmetries. Phase-sensitive experiments such as
the tricrystal experiments performed on cuprates® are the
most definitive, but are technically challenging and require
high-quality samples. A simpler technique, proposed in Ref.
3, which is not phase sensitive but provides information on
the distribution of nodes on the Fermi surface, is a measure-
ment of the specific heat in the presence of a magnetic field,
H, which is rotated with respect to the crystal axes of the
sample. It was shown in that work that if the effect of the
superflow due to vortices on the quasiparticle spectrum is
treated semiclassically, via the Doppler energy shift,*> the
low-temperature specific heat of a superconductor with line
nodes acquires an oscillatory dependence on the field orien-
tation. In particular, the low-temperature specific heat coef-
ficient y~ TWH was shown to have minima when the mag-
netic field points in the direction of the nodes in the order
parameter, and maxima for the field along the antinodes,
where the gap is maximal. Reference 3 and its extension,
Ref. 6, made use of two additional approximations. First,
they replaced the Doppler energy shift of a quasiparticle with
momentum k near one of the nodes by its value at the node,
k=k,. This so-called nodal approximation had been shown
to work well compared to the full semiclassical evaluation in
Ref. 5, providing T,Ey<<A,. Here A is the maximum gap
over the Fermi surface, and Ey~AgvH/H,,, where H,, is
the upper critical field, is a magnetic energy scale (see Sec.
II). Second, making predictions for low temperatures and
fields, T, Ey<<A,, the authors of Refs. 3 and 6 used a form of
the order parameter linearized in the vicinity of the nodal
points.

By now there have been several experimental tests of
these ideas,”!® and the observations have been generally
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consistent with theoretical expectations. At the same time,
the assignment of the nodal directions in several materials
remains controversial. In CeColns the measurements of the
anisotropy of the specific heat’ and the thermal conduc-
tivity!#!> appear to give contradictory results for the gap
structure. In Sr,RuO, the specific heat oscillations were ob-
served to invert as the temperature and field was varied, i.e.,
the minima and maxima as a function of angle changed
places.!%13

Such an inversion was never found in earlier theoretical
calculations within the semiclassical approach, even though
it was found in theoretical work employing other techniques
(see below). This clearly poses a problem: if the technique is
to be useful as a way to “map” out the nodal structure, it is
necessary to be able to predict if and when such inversions
will occur; otherwise the nodes in the order parameter may
be assigned to incorrect locations in momentum space.

Numerical solution of the Bogoliubov—de Gennes equa-
tions yielded an inversion in the anisotropy of the density of
states (DOS), N(w, ), between the field applied in the nodal
and antinodal directions,!® but this was argued to reduce,
rather than invert, the specific heat anisotropy. Recently
Vorontsov and Vekhter!”!3 considered the limit H,, <H
=H. by extending the method of Brandt, Pesch, and
Tewordt,'”2% and found an agreement with the semiclassical
method at low 7" and H, but an inversion of the specific heat
oscillations over a large part of the 7-H phase diagram. Since
the approximation they used was tailored for moderate to
high fields, their determination of location (or, indeed, the
existence) of the inversion line could be questioned.

In this paper we demonstrate that this inversion is a ge-
neric feature of the specific heat in unconventional supercon-
ductors. We revisit the semiclassical approach to the in-plane
specific heat oscillations of a quasi-two-dimensional d-wave
superconductor, but relax the approximations which led in
Refs. 3, 6, and 21 to simple analytical forms for C(T;6) at
low temperatures. We are thus forced to do a numerically
demanding evaluation of the entropy and specific heat, which
involves a two-dimensional (2D) k summation and a 2D av-
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eraging over a vortex lattice unit cell. Our model is not re-
stricted to low temperatures, and is valid (within limits dis-
cussed below) in the low-field regime H., < H<H,,. It may
thus be considered to complement the results of Refs. 17 and
18. We find that the anisotropy of the specific heat is inverted
as the temperature is increased. This result demonstrates that
the inversion phenomenon is robust across the phase diagram
for unconventional superconductors, and provides an impor-
tant caveat to the interpretation of the stationary points in
specific heat oscillations.

II. SEMICLASSICAL APPROACH

In superconductors with line nodes, the vortex core con-
tribution to the low-energy density of states is smaller than
that from the quasiparticles outside the core region.* In sys-
tems with short coherence length, such as cuprates and heavy
fermion materials, the dominance of the extended quasipar-
ticle states is even more pronounced since the spacing of the
energy levels in the vortex core is large, and only few such
levels (if any exist at all) are occupied at low temperature.
Bulk quasiparticles in the vortex state are excited from the
pair condensate moving with the superflow around each vor-
tex; hence the effect of applied magnetic field can be simply
described by Doppler shifting the spectrum of extended qua-
siparticle states according to the local value of the superfluid
velocity, v,(r). This approximation is valid at H<H,,, when
the vortices are far apart and v (r) varies slowly on the scale
of the superconducting coherence length. Using this ap-
proach, Volovik* predicted that the density of states at the
Fermi level in the vortex state of a superconductor with line
nodes varies as N(w=0;H)x VH. Specific heat measure-
ments on high-7,. cuprates verified the VH field
dependence,?>?* which played an important role in the iden-
tification of d-wave symmetry. It should be noted, however,
that the result holds for any gap with line godes, including,
for example, some p-wave states. The VH dependence is
modified by the presence of disorder to H log H as shown by
Kiibert and Hirschfeld,? but remains nonlinear and qualita-
tively similar to the pure case.

The semiclassical approximation provides a conceptually
transparent and tractable approach to the effect of the vortex
lattice on low-lying quasiparticle states. Its validity has been
questioned by several authors, who attempted a more accu-
rate description of the effect of both applied field and super-
currents on the quasiparticle spectrum. Franz and
Tesanovi¢?® introduced a singular gauge transformation that
takes into account both the supercurrent distribution and the
magnetic field, and mapped the full quantum-mechanical
problem onto that of nodal Dirac fermions interacting with
effective scalar and vector potentials that are periodic in the
unit cell of the vortex lattice. They discovered significant
differences from the quasiclassical theory in the quasiparticle
excitations at very low energy, as is to be expected since the
semiclassical approach works only for large quantum num-
bers. We do not discuss the details of this breakdown here
since it was done by Knapp et al.,’”-*® who explicitly com-
pared the quantum-mechanical and semiclassical results for
the density of states, and found that small differences be-
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tween the two approaches begin to appear below a crossover
scale which is exponentially small in the Dirac cone aniso-
tropy vg/v,. Here v is the Fermi velocity, and v, =dA/dk
is the gap “velocity” at the node (kj is the momentum com-
ponent along the Fermi surface). Since in real materials this
ratio is large, and in real samples the presence of impurity
scattering and the disorder in the vortex lattice smear out the
energy structure on small scales, we assume that for purposes
of comparison with the measurements, the semiclassical de-
scription is adequate.

Dahm et al.?® investigated in detail the comparison of the
simple single vortex Doppler-shift approach with the solu-
tion of the quasiclassical microscopic Eilenberger equations
using several techniques including the Brandt, Pesch, and
Tewordt approximation.!®?® At distances from the vortex of
the order of the coherence length, the Doppler-shift method
is quantitatively inadequate because of core state contribu-
tions or scattering resonances, but these effects have little
qualitative impact on the calculation of thermodynamic prop-
erties. Full calculation of the zero-energy DOS in the quasi-
classical limit, kz&>1,%" and recent work employing the
Kramer-Pesch approach?! to improve the description of the
core states at the lowest energies both arrive at results very
similar to the Doppler shift in that energy range. We there-
fore proceed with the simplest Doppler-shift analysis for a
single vortex unit cell, in order to make the qualitative point
which is the main result of this work.

For concreteness, we consider a quasi-two-dimensional
superconductor with d-wave symmetry. This situation is
most closely realized in cuprates, possibly the heavy fermion
115 compounds'#*? and potentially also the newly discov-
ered oxypnictide materials.’> We consider the field applied
parallel to the conducting plane, Hllab, and assume that the
system is sufficiently three dimensional so that at the fields
of interest the structure of the mixed state resembles the
Abrikosov vortex lattice penetrating a stack of weakly
coupled 2D planes.’* In this case the vortex superflow field
v, is three dimensional, different on different planes within
the vortex unit cell. For weak interlayer coupling we con-
sider a circular in-plane Fermi surface, and therefore account
only for quasiparticles with momenta kllab. Deviations from
Fermi-surface isotropy and effects of multiple Fermi-surface
sheets have been studied, e.g., in Refs. 35 and 36 but do not
affect the qualitative conclusions we wish to draw here.

The single-particle Green’s function in the presence of a
superflow velocity field v, is obtained by Doppler shifting
the quasiparticle states with energy  and momentum k (Ref.
5) (we use units with A=kz=1),

(iw, = v(r) - K) 19+ Ag7 + &3 1)
(lwn - Vs(r) : k)2 - gi - AE ’

G(k7r7 wn) ==

where w, is the fermionic Matsubara frequency, &, is the
band energy measured with respect to the Fermi level, 7; are
Pauli matrices in particle-hole space, and Ag=A, cos 2¢,
with ¢ the azimuthal angle on the Fermi surface.

We consider the magnetic field, H, applied in the ab
plane, and approximate the superflow by that of an aniso-
tropic three-dimensional (3D) superconductor in the London
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model. The contours of constant v, are then elliptical due to
anisotropy of the penetration depth, A, # \.. After rescaling
the ¢ axis by z’ =z\,,/ ., the superflow is cylindrically sym-
metric and the Doppler shift for quasiparticles at the Fermi
surface is given by>®

fiky

vi(r) - kp= %Sin(t/f)sin(ﬁ— ®), (2)

where ¢ is the winding angle of the superfluid velocity in
real space, 6 is the angle between H and the a axis, and r is
the rescaled distance from the center of the vortex. Note that
we explicitly exclude from consideration quasi-1D Fermi
surfaces such as those shown by Tanaka et al.3® to lead to
C(H; 0) oscillation inversion at low temperatures.

From Eq. (1) the local density of states is

N(w,r)=— ilmz Tr Gk, — v,(r) - K)
k

JZﬂ' dd)
= NO Re 7 .
0 27\ (w-v,(r) kp)?—|Ay(P)

3)

Here N, is the normal-state density of states. The net DOS
per volume is found by spatially averaging N(w,r) over a
unit cell of the vortex lattice containing one flux quantum,
®,. After rescaling the ¢ axis the unit-cell area increases by a
factor N./\N,,, and therefore flux quantization dictates that
the quasiparticles now experience the effective field H*
=(Ng/N)H. In the new coordinates the radius and the area
of such a cell are Ry=v®y/7H* and Ay= 'n'R%,, respectively.
Introducing polar coordinates, r=Ry(p cos i,p sin i), we
find for the average field-dependent density of states

| = v,(r) - kgl

1 2
N(w,H,T) = lJ pdpf dyN(w,r). (4)
m™Jo 0

The density of states depends on the angle between the
field and the crystal axes. At low energies the dominant con-
tribution to the local DOS is from the near-nodal regions,
b~ ¢,=m/4d*Enw/2, with n=0,...,3, and oscillations in
N(w,H,T) appear since the Doppler shift at a given node
vanishes when the field is aligned with that node. In the
nodal approximation with linearized order parameter, the
analytical form of the density of states was obtained>> (see
Sec. III); however, as pointed out before, this approximation
does not give the reversal of the anisotropy (see below).

In all of the following we carry out the full summation
over the momenta and the real-space coordinates. We use the
density of states to compute the entropy,

§S=- 2f doN(w){[1 - f(o)]log[1 - f(w)] + flw)log f(w)},

(5)

where f(w)=[exp(w/T)+1]"" is the Fermi function. To ob-
tain the heat capacity at constant volume we differentiate
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a8
CWT,H) = T<8_T>H,v' (6)

At low T and H, when the gap varies weakly with tempera-
ture, the temperature derivative acts only on the Fermi func-
tion in Eq. (5), and the specific heat is given by the simple
form

w

1~ w?
C/(T,H) = 3 f B dwN(w,H)FsechzzT. (7)

Here we consider the full range of temperatures below the
transition, and hence evaluate the specific heat from Eq. (6).
We approximate the temperature dependence of the order
parameter, A, (7T), according to the BCS weak-coupling an-
satz appropriate to a circular Fermi surface’’

T, EL Q_
A(T) = A, cos(2¢)ta“h{ A, \/3 7§(3)(T I)J )

where Ay=2.14T, is the gap maximum.

In the absence of impurity scattering, there are two impor-
tant low-energy energy scales in the problem: the tempera-
ture T and the magnetic energy, or typical Doppler shift Ey
=vp/Ry. To satisfy the requirements of the semiclassical
approach, we consider only E; <A, but temperature to vary
over the entire range 7T<T..

II1. DENSITY OF STATES IN PLANAR FIELD

In the nodal approximation of Ref. 3, the quasiparticle
momentum k is replaced by its value k,, at each of the four
nodes, which are then summed over. The residual density of
states at the Fermi level, Eq. (4), then becomes

NO.H) 2\2Ej,
BT () ©)

where the angular variation is given by B(6)
=max(|sin 6],|cos 6]). Equation (7) then yields the linear in
temperature specific heat at low T with the slope

-
. Cy(T;H) 4\2wEy

| = —B(6). 10
lim == 3 AO,3() (10)

At low energies, Ey,w<<A,, the density of states in the nodal
approximation with linearized order parameter takes the

form?-°
w=l{ﬂF<ﬁ>+&F(£”’ (1

where E|=E|sin(7/4—-0)|, E,=Ey|cos(m/4—6)|, and the
scaling function F is given by?
if y=1,

F(y) y[1+1/(2y%)]
Y= [(1+2y?)arcsin y + 3y\1 —y*ym if y=1.

(12)

Note that in the limit y — o0, F(y) —y such that N(w,H,T) in
Eq. (4) recovers the isotropic low-w d-wave density of states
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FIG. 1. (Color online) Comparison of the nodal approximation
Eq. (11) for the density of states N(w,H) versus the full density of
states at 7=0.0017,. and E;=0.2T,. Solid line: nodal approximation
for H along antinode. Dashed line: nodal approximation for H
along node. Red circles: full evaluation for H along node. Black
triangles: full evaluation for H along antinode. The inset magnifies
the low-frequency range.

/Ay. Thus in the nodal approximation with linearized order
parameter the specific heat oscillations are washed out at
higher temperatures, but the method cannot generate specific
heat oscillation inversions.

In Fig. 1, we now compare the density of states of a
d-wave superconductor obtained from a complete evaluation
of Eq. (4) with the nodal approximation with linearized order
parameter Eq. (11). In agreement with all previous work the
density of states for field in nodal and antinodal directions is
strongly anisotropic for w =< Ey, and the anisotropy is washed
out at higher energies. However, the difference between
N(w,H,T) for the two directions of the field reappears at
energies of order A, the energy scale absent in the versions
of the calculation with linearized gap.

For the field along the antinode HIk,, (6=0,7/2,...) the
density of states continues to be sharply peaked at A, as in
the absence of the field. This peak is largely due to the qua-
siparticles moving along the field, which do not experience
the Doppler shift and see the full maximal gap. In contrast,
for the field along the node, HIk, (6=m/4,37/4,...), the
DOS has broad features around Ay=* Ej. As a result, the
density of states for the field along the nodal direction begins
to exceed that for field along the antinode at the lower shoul-
der, and the DOS anisotropy is inverted, relative to that at
low energies.

We emphasize that the absence of the structure near the
gap edge in N(w,H,T) in previous work is a consequence of
gap linearization, and not the nodal approximation. We ob-
serve features similar to those depicted in Fig. 1 when re-
placing k—k, in the Doppler shift, but keeping the full
variation in the order parameter around the Fermi surface. Of
course, the nodal approximation is not accurate at the ener-
gies of order A, and hence we continue with the full evalu-
ation of the DOS.

The anisotropy in the density of states that we computed
differs from that found in Refs. 17 and 18, where noticeable
inversion of the anisotropy in N(w,H,T) occurred already at
relatively low energy, as a result of the competition between
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FIG. 2. DOS N(0, ) vs magnetic field angle 0 at E,=0.2T, and
T=0.05T, for equally spaced frequencies, 0.025A, apart, from o
=0 to 0.175A,. The solid line is the result of the nodal approxima-
tion for the =0 DOS from Eq. (9).

Doppler shift and vortex scattering. Remarkably, we find that
even within the semiclassical method, when the lifetime re-
mains infinite and the scattering on the vortices is neglected,
the anisotropy in the density of states is still reversed, albeit
at higher energies of order of the gap maximum.

The possibility of an inversion of the specific heat aniso-
tropy is clear from Fig. 1. In Eq. (7) the density of states is
convoluted with the temperature-dependent weighting func-
tion, peaked around w=2.5T7. At a given field, as the tem-
perature is increased, more weight in the kernel shifts to
higher energies, where the anisotropy in the DOS is opposite
to that at low w. Whether an inversion then occurs at higher
T depends primarily on whether the kernel has sufficient
weight in the exponential tail at energies w=A,—FE}. Since
the DOS anisotropy is small in magnitude above this cross-
ing energy, the specific heat must be calculated numerically.

In Fig. 2 we plot the density of states as a field sweeps
through the ab plane. We clearly see that for low frequency
the node and minimum in the oscillations coincide, and that
at higher frequencies this is no longer the case. The eventual
inversion of this pattern results in the angular density of
states having a maximum at the gap node for higher frequen-
cies.

IV. SPECIFIC HEAT OSCILLATIONS

Numerical differentiation of the entropy is computation-
ally intensive due to the high accuracy required in finding S
in Eq. (5). To illustrate the precision of our calculations in
Fig. 3, we show the numerically evaluated specific heat at
H=0 and at E;=0.4T, for the field along the a axis over a
wide temperature range both below and above 7,.. The
normal-state specific heat above 7. is Cy=yyT=2N,mT/3,
where N is the Fermi-level DOS per spin.

To test our numerical evaluations we first check the nu-
merical results against the asymptotic low-temperature spe-
cific heat in zero field. For our model of a 2D d-wave super-
conductor with a circular Fermi surface at 7<<T,, we find

Yo (13)
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FIG. 3. Temperature dependence of the specific heat (at constant
volume) normalized to the specific heat in the normal state Cy/Cl,
where Cy=vyyT. We show both the exact (symbols) and the
asymptotic low-T (dotted line) behavior in the absence of the field,
and compare it to the numerically determined Cy/Cy at Ey=0.4T,
(dashed line). There is no reduction in 7. with field in our approach.

—Qfﬂ Teige3y~ 1011, (14)
yO_AO o cosh?(x/2) A,

which agrees with the numerically determined slope. The
Volovik effect is manifested in Fig. 3 in the finite offset of
C/T [Eq. (10)] in the presence of magnetic field Ey=0.4T...
We proceed to evaluate the specific heat for fixed Ey and
several temperatures as a function of the field angle 6. Figure
4 shows that the inversion of the DOS anisotropy found in
Sec. III indeed is sufficient to lead to the inversion of the
specific heat oscillations at characteristic temperature, T,
In Fig. 4 the fourfold oscillations are clearly visible at low 7,
and minima occur for H along nodal directions as antici-
pated. However, at higher temperatures, an inversion in the
pattern of oscillations is evident. In Fig. 5 we examine the
anisotropy by plotting the difference between the specific
heat for the field along the nodal and the antinodal directions,
which identifies the temperature at which inversion occurs.
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9

FIG. 4. Left panel: C(T,H)/C(T,6=0) vs 6 for a set of equally spaced temperatures, every 0.027,
panel: same for a set of equally spaced temperatures from O to 0.087, every 0.027,
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Since in our approach the inversion is due to the sensitiv-
ity of the specific heat to the changes in the DOS within
energy range ~FEpy of the gap edge, increasing both the mag-
netic field and the temperature initially enhances the ampli-
tude of the inverted oscillations. Increasing the field brings
the anisotropy inversion down in energy in Fig. 1; raising the
temperature increases the contribution of the high energy re-
gions in C/T. While the amplitude of the inverted (relative to
those at 7=0) oscillations in Cy is small, it is of the same
order of magnitude as that observed experimentally’*-'? and
found theoretically for a quasi-two-dimensional system at
moderate fields.!”'® Of course, when H(T) approaches the
upper critical field (the transition temperature), the gap in the
spectrum closes and the oscillations vanish; we cannot, how-
ever, reliably comment on the evolution of the anisotropy in
this regime within the semiclassical method. At the same
time it follows from our analysis that the amplitude of the
inverted oscillations has a maximum at intermediate fields
and temperatures, also in agreement with Refs. 17 and 18.
Therefore our results connect well with those obtained by a
different technique.

We emphasize that our primary goal here has been to
identify qualitative features of the oscillation inversion.
Many realistic effects stemming from band structure, lifetime
effects, field dependence of the gap, and inclusion of core
size effects would be corrections to the semiclassical method
used here. For example, Nakai et al.® found the quadratic, in
temperature, correction to the dominant linear term in the
specific heat due to the change in the vortex core radius (the
Kramer-Pesch effect®®). These as well as other corrections
may have a quantitative effect on the precise location of the
inversion line in the 7-H plane.

V. CONCLUSIONS

In this paper we have calculated the specific heat of a
two-dimensional d-wave superconductor in an external mag-
netic field using the semiclassical treatment of the effect of
the vortex lattice on the quasiparticle spectrum. In contrast to
previous work utilizing the nodal approximation with linear-
ized order parameter, we carried out a full numerical evalu-
ation of the density of states and the entropy for a wide range

1.01
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1 u.||olzgo”'n’z2::!!f::::::::::::::::!!!::thl"ogu-un
(Cy (0) 0.99
(Cy(0)
0.98 ‘. .S
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n Ve
4 2
0

., from O to 0.187,, E;,=0.2T,. Right
. E,=0.05T,.
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FIG. 5. Amplitude of specific heat oscillation defined by differ-
ence of Cy between node and antinode, [CV(O)—CV(f)]/ Cy/(0) for
Ep=0.2T. (solid line) and E;=0.05T, (dashed line).

of fields and temperatures. Our main finding is that the sign
of the oscillations of the specific heat as a function of the
field orientation, i.e., the difference between Cy, for the field
along a nodal direction and along the antinode, depends on
the temperature and field strength. We confirmed that at low
temperatures and fields the specific heat has a minimum
when the field is along a nodal direction. However, as H and
T are increased, minima of the specific heat begin to occur
for the field along the gap maxima, i.e., an inversion of the
oscillation pattern occurs. Note that while we considered a
system with well-defined quasiparticle states, it is reasonable
to believe that scattering due to impurities or vortex lattice
disorder will merely smear the anisotropy on both sides of
the inversion line.

Our calculations provide a bridge connecting the semi-
classical theory at low fields H<<H_, with the results of the
extended Brandt-Pesch-Tewordt approximation,'”!8 where
the inversion was first found. The latter approach is in prin-
ciple valid at H<H_,, but has been shown to provide re-
markably good agreement with semiclassical predictions
down to low fields, up to logarithmic corrections.'® To com-
pare the results of the two approaches explicitly, we extend
our calculation to higher fields, account for the field depen-
dence of the gap amplitude via A(T,H)=A(T)\V1-H/H,,,
and determine the inversion line. This provides a direct com-
parison with the results of Ref. 18, where the same field
dependence was assumed for a circular Fermi surface iden-
tical to that considered above. In Fig. 6 we plot the approxi-
mate crossover scales for both the Brandt-Pesch-Tewordt and
semiclassical theories. There is a remarkably good qualita-
tive agreement for the behavior of the inversion line up to
moderate fields, where the ranges of validity of the two ap-
proaches may reasonably be assumed to overlap. This estab-
lishes a phase diagram for when the specific heat is expected
to have minima or maxima at the gap nodes.

Taken together, these results strongly suggest that the in-
version of the specific heat oscillations with temperature is a
general feature for all nodal superconductors, and establish
the approximate location of the inversion line. Consequently,
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x---x C inversion (BPT)

FIG. 6. (Color online) Phase diagram H/H,, vs T/T, for spe-
cific heat oscillations of a d-wave superconductor in a magnetic
field. The shaded regions indicate that the specific heat C(7,H) has
a minimum when the field H points in the nodal direction, whereas
the white regions indicate inverted oscillations, where minima cor-
respond to field along antinode. The gray shaded regions are results
from Ref. 18 using the Brandt-Pesch-Tewordt framework, whereas
the blue regions represent the region of the H-T plane where
minima correspond to nodes within the semiclassical theory. The
phase diagram comparing both approaches was determined using
the assumption H/H,=(Ey/Ag)?, valid up to a prefactor of order
unity. Inset: blowup of the low 7 and H region. Note the field scale
is given in terms of Ey/A for easier comparison with other results
in this work.

identification of the nodes in the gap via the specific heat
measurements is not as straightforward as the original semi-
classical results suggested, and depends on where the experi-
ment is done in the field-temperature plane. While the inver-
sion of the oscillations in related experiments on the
anisotropy of the heat conductivity of nodal superconductors
has been well established,!>***2 an inversion in the heat-
capacity measurements has not yet been searched for system-
atically. Experimental identification of the inversion line in
the 7-H plane would be an important step toward further
establishing the heat-capacity measurements as the method
of choice for determining the nodal directions in the bulk,
and our paper provides a theoretical foundation for such a
search.
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